Skip to main content

Matrices

Properties​

Prove: (AB)β€²=(Bβ€²Aβ€²)\bold{(AB)'}=\bold{(B'A')}

Proof:


Prove: (Aβˆ’1)β€²=(Aβ€²)βˆ’1\bold{(A^{-1})'}=\bold{(A')^{-1}}

Proof:

(Aβˆ’1)β€²Aβ€²=(AAβˆ’1)β€²=Iβ€²=Iβ€…β€ŠβŸΉβ€…β€Š(Aβˆ’1)β€²=(Aβ€²)βˆ’1β– \begin{align*} \bold{(A^{-1})'A'}&=\bold{(AA^{-1})'}\\ &=\bold{I'}\\ &=\bold{I}\\ \implies \bold{(A^{-1})'}&=\bold{(A')^{-1}}\hspace{20px}\blacksquare\\ \end{align*}

Prove: (AB)βˆ’1=Bβˆ’1Aβˆ’1\bold{(AB)^{-1}}=\bold{B^{-1}A^{-1}}.

Proof:

(AB)(AB)βˆ’1=IAβˆ’1(AB)(AB)βˆ’1=Aβˆ’1I(IB)(AB)βˆ’1=Aβˆ’1IB(AB)βˆ’1=Aβˆ’1Bβˆ’1B(AB)βˆ’1=Bβˆ’1Aβˆ’1(AB)βˆ’1=Bβˆ’1Aβˆ’1β– \begin{align*} \bold{(AB)(AB)^{-1}}&=\bold{I}\\ \bold{A^{-1}(AB)(AB)^{-1}}&=\bold{A^{-1}I}\\ \bold{(IB)(AB)^{-1}}&=\bold{A^{-1}I}\\ \bold{B(AB)^{-1}}&=\bold{A^{-1}}\\ \bold{B^{-1}B(AB)^{-1}}&=\bold{B^{-1}A^{-1}}\\ \bold{(AB)^{-1}}&=\bold{B^{-1}A^{-1}}\hspace{20px}\blacksquare\\ \end{align*}

Note: Existence of (AB)βˆ’1\bold{(AB)^{-1}} does not imply that Bβˆ’1\bold{B^{-1}} and Aβˆ’1\bold{A^{-1}} exist.


Prove: E[Tr(X)]=Tr(E[X])\mathbb{E}[\text{Tr}(\bold{X})]=\text{Tr}(\mathbb{E}[\bold{X}]).

Tr(X)=βˆ‘i=1nxii,E[Tr(X)]=E[βˆ‘i=1nxii],E[Tr(X)]=βˆ‘i=1nE[xii].\begin{align*} \text{Tr}(\bold{X})&=\sum_{i=1}^nx_{ii},\\ \mathbb{E}[\text{Tr}(\bold{X})]&=\mathbb{E}[\sum_{i=1}^nx_{ii}],\\ \mathbb{E}[\text{Tr}(\bold{X})]&=\sum_{i=1}^n\mathbb{E}[x_{ii}].\\ \end{align*}

βˆ‘i=1nE[xii]\sum_{i=1}^n\mathbb{E}[x_{ii}] is equivalent to Tr(E[X])\text{Tr}(\mathbb{E}[\bold{X}]), therefore

E[Tr(X)]=βˆ‘i=1nE[xii]=Tr(E[X]).β– \begin{align*} \mathbb{E}[\text{Tr}(\bold{X})]&=\sum_{i=1}^n\mathbb{E}[x_{ii}]=\text{Tr}(\mathbb{E}[\bold{X}]).\hspace{15px}\blacksquare\\ \end{align*}

Rank of a Matrix​

Column Space: The column space of a matrix is the vector space that is spanned by its column vectors.

For example

A=[156268718]\bold{A}= \begin{bmatrix} 1 & 5 & 6\\ 2 & 6 & 8\\ 7 & 1 & 8 \end{bmatrix}

here the third column is the sum of the first two hence the column space of this matrix is a two-dimensional subspace of R3\mathbb{R}^3.

Column Rank: The column rank of a matrix is the dimension of the vector space that is spanned by its column vectors. The column rank of the following matrix is 22.

A=[156268718]\bold{A}= \begin{bmatrix} 1 & 5 & 6\\ 2 & 6 & 8\\ 7 & 1 & 8 \end{bmatrix}

Row Rank: The row rank of a matrix is the dimension of the vector space that is spanned by its row vectors. The row rank of the following matrix is 33.

B=[123515645314]\bold{B}= \begin{bmatrix} 1 & 2 & 3\\ 5 & 1 & 5\\ 6 & 4 & 5\\ 3 & 1 & 4 \end{bmatrix}

The notation of row rank of matrix B\bold{B} is: rankΒ Bβ€²\text{rank }\bold{B'}

Theorem: The column rank and row rank of a matrix are equal.

Column rank = Row rank = Rank of the matrix. That is

rankΒ A=rankΒ Aβ€²\text{rank }\bold{A}=\text{rank }\bold{A'}

Full column rank: If the column rank of a matrix happens to equal the number of columns it contains, then the matrix is said to have full column rank.

Full row rank: If the row rank of a matrix happens to equal the number of rows it contains, then the matrix is said to have full row rank.

Property:

rankΒ A≀min⁑(numberΒ ofΒ rows,Β numberΒ ofΒ columns)\text{rank }\bold{A}\leq\min(\text{number of rows, number of columns})